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Radiative energy transport 
through hydrostatic system 
predicts system structure!
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If abundances fall, then opacity must rise!
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J. Bailey et al. (2015)

CZB

If abundances fall, then opacity must rise!
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What are Bad Foils?
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Images: I. Usov
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Higher incident rate in some classes of samples
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1. Stress defects 
Break
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Break, buckling

Break in metal is why!
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Nominal
(edge-on)

Break in metal is why!

Break, filled

Corrosion

2. Nonstress defects
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• Transport methods
– Sn
– IMC

• Source models
– Fast
– Slow

• Preheat models
– No preheat
– Preheat

• Defect models
– Stress
– Nonstress

Representative, NOT exhaustive exploration
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Base model:
Sn, nominal, 
no preheat, 
fast source

Comparison of transport methods

IMC with uniform particle energy: hottest, effective sources are allocated most particles and ensured good statistics
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Base model:
Simple break Comparison of preheat ⨉⨉ source models

Preheat explains the greatest variation between models: overexpansion AND corrugation when absent
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Comparison of preheat models

Preheat affects particle statistics at the metal AND the overburden of the tamper
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Stress defects in tamper do not break metal

Nonstress defects were unremarkable
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Comparison of defect sizes
Base model:
Simple break

Infill of break by tamper arrests closure by metal
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Equation of radiative transfer
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Free-streaming of backlight through breaks in metal damps features
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Partial Covering
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Damping of features is predictable

More damping by proportion for stronger features
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Break in metal is the most effective defect model

Preheat explains the greatest variation between models
Without preheat

100 times higher tamper opacity than with 99 eV preheat 

Short radiation MFP

Shallow sonic point of radiation heat front

Snowplow/ablation of tamper
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Break in metal is the most effective defect model

Preheat explains the greatest variation between models
With preheat

Near-ideal volumetric heating and expansion
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Summary
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Break in metal is the most effective defect model

Preheat explains the greatest variation between models

Initial appearance and distribution of defects effectively preserved

Measured opacity damped by free-streaming backlight radiation through breaks in metal 

Worse damping for larger nominal opacity
Damping is serious even at ~1 % areal coverage (surviving from the smallest visible defects) of the target by breaks

Shoot bad foils to test defect models, not to baseline new metal opacities
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